吉林小说网

繁体版 简体版
吉林小说网 > 宇宙地球人类三篇 > 第307章 恒星与行星(转变与形成)

第307章 恒星与行星(转变与形成)

一、恒星与行星之间的相互转变:

行星能变成恒星吗?

一般情况下,行星无法自然变成恒星,因为它们的质量太小,无法触发持续的核聚变。但在极端条件下,某些超大质量行星或特殊天体可能接近恒星状态。以下是详细分析:

1 行星与恒星的核心区别

特征 行星 恒星

形成方式 原行星盘吸积 分子云坍缩

典型代表 木星、地球、超级地球 太阳、红矮星、巨星

关键限制:

- 13-75倍木星质量的天体属于褐矮星(失败的恒星),仅能短暂进行氘聚变。

---

2 行星为恒星的极端可能性

虽然极罕见,但理论上有几种方式可能让行星接近恒星状态:

(1)暴力吸积物质(吞噬周围气体)

- 过程:

- 若行星位于物质极其丰富的环境(如原恒星盘或恒星抛出的气壳),可能疯狂吸积气体。

- 需吸积约 60倍木星质量 才能跨越氢聚变门槛。

- 现实限制:

- 吸积效率极低,行星可能被恒星引力撕碎(如热木星被宿主恒星吞噬)。

- 目前未观测到此类案例。

(2)多颗巨行星碰撞合并

- 过程:

- 在年轻恒星系统中,多颗超级木星(如10-30倍木星质量)相撞,可能合并成褐矮星。

- 例如:2009年观测到的 2ass j0 红外爆发事件,疑似两颗巨行星碰撞。

- 限制:

- 合并后的天体仍可能无法达到氢聚变质量(需至少75倍木星质量)。

(3)褐矮星的模糊地带

- 案例:

- 自由漂浮的褐矮星(如sip j05+0)质量接近行星,但内部仍有短暂氘聚变。

- 争议:

- 这些天体是否算升级的行星仍存争议,因其形成方式可能更接近恒星。

---

3 现实观测与理论限制

自然条件下,行星无法变成恒星(质量差距过大)。

褐矮星是行星和恒星之间的灰色地带,但本质仍是失败的恒星。

科幻设想(如戴森球压缩行星)在现实中不可行。

---

4 科学共识

- 行星变恒星属于宇宙中的极端小概率事件,目前无明确观测证据。

- 更常见的是研究褐矮星和特殊双星系统,它们挑战了传统分类。

---

结论

行星直接变成恒星几乎不可能,但某些超大质量行星或碰撞合并事件可能产生类恒星天体(如褐矮星)。真正的恒星仍需通过分子云坍缩形成,而非行星演化而来。

恒星能变成行星吗?

一般情况下,恒星不会直接变成行星,因为两者的形成机制和演化路径完全不同。但在极端情况下,某些恒星残骸或特殊天体可能表现出类似行星的特性。以下是详细分析:

---

1 恒星与行星的根本区别

特征 恒星 行星

形成方式 分子云坍缩 原行星盘吸积

典型代表 太阳、红矮星、巨星 地球、木星、超级地球

恒星的核心必须持续进行核聚变才能维持其身份,而行星主要依靠引力平衡和冷却后的热量。

---

2 恒星为行星的极端可能性

虽然恒星通常不会直接变成行星,但在特殊演化过程中,某些恒星残骸或伴星可以被视为行星类似物:

(1)白矮星冷却成钻石行星

- 过程:

- 中小质量恒星(如太阳)死亡后变成白矮星(地球大小,超高密度)。

- 经过万亿年冷却后,白矮星不再发光,变成一个结晶碳球(类似钻石行星)。

- 如果它围绕另一颗恒星运行,可能被重新归类为行星质量天体。

- 现实意义:

- 宇宙年龄(138亿年)远短于白矮星完全冷却所需时间(101?年以上),目前尚未观测到此类天体。

(2)恒星被剥离成行星质量天体

- 过程:

- 在密近双星系统中,一颗恒星(如红矮星)可能被伴星(如黑洞或中子星)剥离外层气体,最终只剩下一个行星质量的核心。

- 例如:psr j1719-1438 b,一颗可能由恒星残骸组成的钻石行星,质量≈木星,但密度极高。

小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!

- 争议点:

- 这类天体是否算仍有争议,因为它们并非通过传统行星形成方式产生。

(3)流浪行星中的失败恒星

- 过程:

- 某些低质量褐矮星(13-75倍木星质量)因形成时质量不足,无法维持核聚变,最终冷却成类似巨行星的天体。

- 如果它们在星际空间流浪,可能被归类为自由漂浮行星。

- 案例:

---

3 恒星残骸 vs 行星的界限

- 这些是恒星死亡的产物,不算行星,但某些极端情况(如psr j1719-1438 b)可能模糊分类。

- 褐矮星:

- 质量介于行星和恒星之间,冷却后类似巨行星,但仍不算真正的行星。

- 被剥离的恒星核心:

---

4 科学共识

恒星通常不会直接变成行星,因为它们的演化终点是白矮星、中子星或黑洞。

某些恒星残骸或褐矮星可能表现出类似行星的特性,但本质仍是恒星或亚恒星天体。

未来观测可能发现更多模糊分类的奇特天体,但目前的定义仍较清晰。

---

结论

恒星变行星在自然条件下极不可能,但某些恒星残骸或特殊演化产物可能接近行星的状态。真正的行星仍需通过原行星盘吸积形成,而非恒星直接转变。

二、行星与恒星的形成过程:

1 恒星的诞生(恒星形成,star foration)

恒星诞生于巨大分子云(gc,giant olecur cloud)的引力坍缩,主要经历以下阶段:

(1)分子云坍缩

原始材料:主要由氢(h?)、氦(he)和少量尘埃组成。

触发机制:

自发坍缩(局部密度波动)

外部扰动(超新星冲击波、星系碰撞等)

(2)原恒星(protostar)形成

吸积盘(aretion disk)形成,物质向中心聚集。

热核反应尚未开始,主要靠引力能发光。

(3)主序星阶段(hydrogen burng)

当核心温度达到 1000万k,氢核聚变(h→he)启动,恒星正式诞生。

进入主序星阶段(如太阳已在此阶段约46亿年)。

恒星质量范围:

褐矮星(失败恒星):1375倍木星质量(仅短暂氘聚变)。

2 行星的形成(行星形成,p foration)

行星诞生于恒星周围的原行星盘(proary disk),主要有两种理论:

(1)核心吸积模型(re aretion)

适用于类地行星和气态巨行星

步骤:

1 微行星(pesials):尘埃碰撞结合,形成公里级天体。

2 行星胚胎(pros):继续吸积,形成月球至火星大小天体。

4 气态巨行星(如木星):核心吸积足够气体(需在气体盘消散前完成)。

(2)盘不稳定模型(disk stability)

适用于快速形成的气态巨行星

过程:原行星盘局部引力不稳定,直接坍缩成行星。

行星质量范围:

超级地球(superearths):210 ⊕。

气态巨行星(木星、土星):1013 _j(木星质量)。

3 恒星 vs 行星形成的关键区别

特征 恒星 行星

物质来源 分子云坍缩 原行星盘吸积

形成时间 10万1000万年 100万1亿年

典型代表 太阳、红矮星、蓝巨星 地球、木星、超级地球 恒星 行星

4 特殊天体:模糊边界

1 褐矮星(brown dwarfs)

质量介于行星与恒星之间(1375 _j)。

短暂氘聚变,但无法持续氢燃烧。

2 流浪行星(rogue ps)

被抛出行星系统的孤行星,可能直接由坍缩形成。

恒星死亡后,残留行星可能围绕白矮星运行(如wd 1856+534 b)。

5 科学共识

恒星通过分子云坍缩形成,依赖核聚变维持发光。

行星通过原行星盘吸积形成,不进行核聚变。

褐矮星介于两者之间,但更接近恒星形成机制。

极端情况(如巨行星碰撞)可能产生类恒星天体,但极其罕见。

总结

恒星和行星的形成机制截然不同:

两者共同构成了宇宙中丰富多样的天体系统!

『加入书签,方便阅读』